
DOI: 10.2478/auom-2020-0013
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A modified Tikhonov regularization method for
a class of inverse parabolic problems

Nabil SAOULI and Fairouz ZOUYED

Abstract

This paper deals with the problem of determining an unknown source
and an unknown initial condition in a abstract final value parabolic
problem. This problem is ill-posed in the sense that the solutions do
not depend continuously on the data. To solve the considered prob-
lem a modified Tikhonov regularization method is proposed. Using this
method regularized solutions are constructed and under boundary con-
ditions assumptions, convergence estimates between the exact solutions
and their regularized approximations are obtained. Moreover numeri-
cal results are presented to illustrate the accuracy and efficiency of the
proposed method.

1 Introduction

Let H be a separable Hilbert space with the inner product (., .) and the norm
‖.‖ and let A : D(A) ⊂ H → H be a positive self-adjoint linear operator with
a compact resolvent. Consider the following final value problem{

ut(t) +Au(t) = f, 0 < t < T2,

u(T1) = ψ1,
(1.1)
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where 0 < T1 < T2 and ψ1 is a given function on H. Our purpose is to identify
the initial condition u(0) and the unknown source f from the overspecified
data

u(T2) = ψ2, ψ2 ∈ H.

Hence, the inverse problem can be formulated as follows: determine f and g
such that {

ut(t) +Au(t) = f, 0 < t < T2,

u(0) = g,
(1.2)

from the data {
u(T1) = ψ1,

u(T2) = ψ2.
(1.3)

As we know, the method of abstract differential equations provides proper
guidelines for solving various problem with partial differential equations in-
volved. As an example of (1.2) we introduce the following problem, let Ω be a
bounded domain in the space Rn, whose boundary is sufficiently smooth and
set ΩT = Ω × [0, T2], ΣT = ∂Ω × [0, T2]. Consider the initial boundary value
problem for the heat conduction equation given by

∂u

∂t
(x, t)−∆u(x, t) = f(x), (x, t) ∈ ΩT ,

u(x, t) = 0, (x, t) ∈ ΣT ,

u(x, 0) = g(x), x ∈ Ω.

(1.4)

Adopting H = L2(Ω), the operator A is taken to be A = ∆ with the domain
D(A) = H1

0 (Ω) ∩ H2(Ω). The direct problem related to the heat equation is
to determine the temperature distribution from the knowledge of the initial
temperature the source term and the boundary conditions, which generally
leads to a well-posed problem. However, it is not always possible to specify
the initial temperature or the source term or the both functions in many
practical situations. So an inverse problem is raised: we have to determine
the u(x, 0) and f(x) from observations at moments T1 and T2 i.e.;

u(x, T1) = ψ1(x), u(x, T2) = ψ2(x), x ∈ Ω, 0 < T1 < T2, (1.5)

where ψ1 and ψ2 are two given functions on H.
The main difficulty in the study of the inverse problem (1.2)−(1.3) (respec-
tively (1.4)−(1.5) ) (as we will see in section 2) is that it is ill-posed i.e., even
if a solution exists, it is unstable. The lack of property of stability creates a se-
rious problem if one wants to approximate the solution by numerical methods.
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Thus, special regularization methods that restore the stability with respect to
measurements errors are needed.
We point out that although the parabolic equations are very popular and
widely studied in the literature of inverse problems for PDEs, such as the
backward parabolic equations see [2, 5, 9, 11, 14, 16, 22] and the references
therein and the identification of the source term in heat equation see, e.g.,
[3, 4, 6, 7, 10, 21, 25], the results on the simultaneous identification of the
source term f and the initial condition u(0) are very scarce. In [13, 18, 23] the
one-dimensional inverse heat problem (1.4)-(1.5) is studied. In [13] the authors
use the boundary element method to recover the space-dependent heat source
and the initial data simultaneously. In [23] the authors propose a numerical
algorithm based on the method of fundamental solutions. In [18], motivated
by the idea of [20] for solving the backward problem of heat equation, a regu-
larization problem is constructed and regularized solutions are obtained.
For the abstract parabolic equation, to our knowledge there is only one re-
sult [1] concerning the simultaneous identification of f and u(0). Indeed in
[1] G. Bastay applied an iterative alternative method to reconstruct the both
functions in the problem (1.2)-(1.3), in the case A has continuous spectrum,
however the autor only established theorytical results and didn’t give numer-
ical implementation. For this reason, we propose a modified Tikhonov regu-
larization method to recover f and u(0) from additional information given at
t = T1 and t = T2, where the choice of the regularization parameter is based on
some a priori knowledge about the magnitude of the errors in the data and we
complete our investigation by numerical simulations justifying the feasibility
of our approach.
The paper is organized as follows, in section 2 we give some tools which are
useful for this study and we show the unstability of the inverse problem. In
section 3, we present a modified Tikhonov method and give convergence es-
timates. The numerical implementation is described in section 4 to illustrate
the accuracy and efficiency of the proposed method.

2 Preliminaries

Let (ϕn)n≥1 ⊂ H be an orthonormal eigenbasis corresponding to the eigen-
values (λn)n≥1 such that

Aϕn = λnϕn, n ∈ N∗,

0 < λ1 ≤ λ2... ≤ ..., lim
n→∞

λn = +∞,

∀b ∈ H, b =

∞∑
n=1

bnϕn, bn = (b, ϕn).
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For p ∈ R, we introduce the Hilbert spaces Hp induced by A as follows

Hp = {b ∈ H :

∞∑
n=1

(1 + λ2
n)p | (b, ϕn) |2< +∞},

with the norm

‖b‖HP = (

∞∑
n=1

(1 + λ2
n)p | (b, ϕn) |2)

1
2 , b ∈ Hp.

We denote by {S(t) = e−tA}t≥0 the C0−semigroup generated by −A on H,

S(t)b = e−tAb =

∞∑
n=1

e−tλn(b, ϕn)ϕn, ∀b ∈ H.

Theorem 2.1. [17] For the family of operators {S(t)}t≥0, we have the fol-
lowing properties

• ‖S(t)‖ ≤ 1, for every t ≥ 0;

• the function t→ S(t), t > 0 is analytic;

• S(t) : H → D(Ar), for every t > 0 and r ≥ 0;

• For every b ∈ D(Ar) and r ≥ 0, S(t)Arb = ArS(t)b;

• For every t > 0 and r ≥ 0, the operator ArS(t) is bounded.

We end this section by a result concerning the existence and uniqueness of
solution of the direct problem.

Theorem 2.2. [8] For given f ∈ H and g ∈ H the problem (1.2) has a unique
solution u ∈ C([0, T ), H) ∩ C1((0, T ), H) given by

u = S(t)g +K(t)f = e−tAg +A−1(I − e−tA)f.

Moreover if g ∈ D(A), u ∈ C1([0, T ), H).

2.1 Unstability of the inverse problem

Now, we wish to solve the inverse problem i.e., find the pair of functions (f, g)
in the system (1.2)-(1.3). Making use of the supplementary conditions (1.3),
we have {

u(T1) = S(T1)g +K(T1)f = ψ1,

u(T2) = S(T2)g +K(T2)f = ψ2.
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Hence, we look for a solution (f, g) to the system{
S(T1)g +K(T1)f = S(T1)g +A−1(I − S(T1))f = ψ1,

S(T2)g +K(T2)f = S(T2)g +A−1(I − S(T2))f = ψ2.
(2.1)

Applying the operator S(T2) to the first equation in the system (2.1) and the
operator S(T1) to the second one, we have

S(T2)S(T1)g + S(T2)A−1(I − S(T1))f = S(T2)ψ1, (2.2)

S(T1)S(T2)g + S(T1)A−1(I − S(T2))f = S(T1)ψ2. (2.3)

By subtracting the equation (2.2) from the equation (2.3) and using semi-
groups properties, we obtain

A−1(S(T1)− S(T2))f = S(T1)ψ2 − S(T2)ψ1.

On the other hand, we apply the operator K(T2) to the first equation in the
system (2.1) and K(T2) to the second one, we have

K(T2)S(T1)g +K(T2)K(T1)f = K(T2)ψ1, (2.4)

K(T1)S(T2)g +K(T1)K(T2)f = K(T1)ψ2. (2.5)

We subtract the equation (2.5) from (2.4), it follows

A−1(I − S(T2))S(T1)g −A−1(I − S(T1))S(T2)g = K(T2)ψ1 −K(T1)ψ2,

that is
A−1(S(T1)− S(T2))g = K(T2)ψ1 −K(T1)ψ2.

Hence, (2.1) is equivalent to the system{
Bf = η1,

Bg = η2,
(2.6)

where
B = A−1(S(T1)− S(T2)),

η1 = S(T1)ψ2 − S(T2)ψ1 and η2 = K(T2)ψ1 −K(T1)ψ2.

It is easily seen that B is a linear, injective, compact and self-adjoint operator

with the singular values (σn = e−T1λn−e−T2λn
λn

)+∞
n=1.



A MODIFIED TIKHONOV REGULARIZATION METHOD FOR A CLASS OF
INVERSE PARABOLIC PROBLEMS 186

Remark 2.1. As many boundary inverse value problems for partial differential
equations which are ill-posed, the study of the problem (1.2)-(1.3) is reduced
to the study of the system (2.6), i.e., the study of operator equations of the
first kind in H, of the form

Bb = η. (2.7)

From the injectivity of B, we obtain

b = B−1η =

∞∑
n=1

1

σn
(η, ϕn)ϕn.

Since 1
σn
→∞ as n→∞, the inverse problem is ill-posed i.e., the solution does

not depend continuously on the given data. Moreover, since in practice the
measured data ψ1 and ψ2 are never known exactly, it is our aim to construct
stable approximate solutions of f and g in the system{

Bf = ηδ1,

Bg = ηδ2,
(2.8)

where ηδ1 = S(T1)ψδ2 − S(T2)ψδ1, η
δ
2 = K(T2)ψδ1 −K(T1)ψδ2, ψ

δ
1 and ψδ2 are the

perturbed data functions satisfying

‖ψ1 − ψδ1‖+ ‖ψ2 − ψδ2‖ ≤ δ1 + δ2 = δ, (2.9)

here δ > 0 denotes a noise level.

Before introducing our results, we require the following assumption, the
source term f and the initial condition u(0) = g satisfy the a priori bounds

‖f‖Hp1 ≤ E1, p1 > 0, (2.10)

‖g‖Hp2 ≤ E2, p2 > 0, (2.11)

where E1, E2 > 0 are constants.

3 A modified Tikhonov regularization method and con-
vergence results

The Tikhonov regularization is a very effective method for solving many ill-
posed problems. However, for this method, it is quite difficult to obtain an
explicit error estimate for some complicated problems. In this section, we
will propose a modified Tikhonov method for solving the system (2.8). As
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it is known the Tikhonov regulariztion method consists in minimizing the
following quantities {

‖Bf − ηδ1‖2 + α2‖f‖2,
‖Bg − ηδ2‖2 + α2‖g‖2,

(3.1)

with respect to f and g respectively. As it is shown in [15], the unique solution
(f, g) of the minimization problems in (3.1) is equal to solve the following
normal equations {

α2fδα +B∗Bfδα = B∗ηδ1,

α2gδα +B∗Bgδα = B∗ηδ2.
(3.2)

Since B is a linear self-adjoint operator, we get{
fδα = (α2I +B2)−1Bηδ1,

gδα = (α2I +B2)−1Bηδ2.
(3.3)

Due to the spectral decomposition for compact self-adjoint operators, we have
fδα =

∞∑
n=1

σn
α2 + σ2

n

(ηδ1, ϕn)ϕn =

∞∑
n=1

βn
1 + α2β2

n

(ηδ1, ϕn)ϕn,

gδα =

∞∑
n=1

σn
α2 + σ2

n

(ηδ2, ϕn)ϕn =

∞∑
n=1

βn
1 + α2β2

n

(ηδ2, ϕn)ϕn,

(3.4)

where βn = 1
σn

= λn
e−T1λn−e−T2λn .

The filter in (3.4) attenuates the coefficients (ηδ1, ϕn) and (ηδ2, ϕn) in a manner
consistent with the goal of minimizing quantities in (3.1). By this idea, we
can use a much better filter 1

1+α2(λneT1λn )2
to replace the filter 1

1+α2β2
n

=
1

1+α2( λne
T1λn

1−e−(T2−T1)λn
)2

and give other approximations fδα and gδα of the solutions

f and g respectively.
Hence, we define regularization approximate solutions of problem (1.2)-(1.3)
which are called the modified Tikhonov regularized solutions as follows

fδα =

∞∑
n=1

βn
1 + α2(λneT1λn)2

(ηδ1, ϕn)ϕn,

gδα =

∞∑
n=1

βn
1 + α2(λneT1λn)2

(ηδ2, ϕn)ϕn.

(3.5)

In the following, we introduce some properties and tools which are useful for
our main theorem.
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Lemma 3.1. The norm of the operator K(t) = A−1(I − e−tA) is given by

‖K(t)‖ =
1− e−tλ1

λ1
.

Proof. Since ‖K(t)‖ = supn≥1
1−e−tλn

λn
, we aim to find the spremum of the

function 1−e−tλn
λn

, n ∈ N∗, for this purpose, fixing t, letting µ = tλ and defining
the function

F1(µ) =
1− e−µ

µ
, for µ ≥ µ1 = tλ1.

We compute

F ′1(µ) =
(µ+ 1)e−µ − 1

µ2
.

Putting
F2(µ) = (µ+ 1)e−µ − 1.

Hence

F ′1(µ) =
F2(µ)

µ2
.

To study the monotony of F1, it suffice to determine the sign of F2. We have

F ′2(µ) = −µe−µ < 0, ∀µ ≥ µ1 > 0,

then, F2 is decreasing, moreover F2(µ) ⊂]− 1, 0[, hence F2(µ) < 0, ∀µ ≥ µ1,
which implies that F1 is decreasing and

sup
µ≥µ1

F1(µ) = F1(µ1).

Therefore,

sup
n≥1

1− e−tλn
λn

=
1− e−tλ1

λ1
.

Moreover

sup
t∈[0,T2]

‖K(t)‖ = sup
t∈[0,T2]

1− e−tλ1

λ1
≤ 1

λ1
. (3.6)

Lemma 3.2. For 0 < α < 1 and p > 0, the following inequalities hold:

sup
n≥1

(1− 1

1 + α2λ2
ne

2λnT1
)(1 + λ2

n)
−p
2 ≤ max(1, T p−2

1 , T p1 ) max(α, (ln(
1√
α

))−p),

(3.7)

sup
n≥1

βne
−λnTi

1 + α2λ2
ne

2λnT1
≤ max(1, T−1

1 )
γ√
α
, i = 1, 2, (3.8)
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sup
n≥1

βn
(1 + α2λ2

ne
2λnT1)λn

≤ max(1, λ−2
1 )

γ

α
, (3.9)

where γ = 1
1−e−λ1(T2−T1) .

Proof. Let λn0 = 1
2T1

ln 1
α , for large values of λn, that is

• λn ≥ λn0, we obtain

G(λn) = (1− 1

1 + α2λ2
ne

2λnT1
)(1 + λ2

n)−
p
2

≤ (1 + λ2
n)−

p
2 ≤ λ−pn ≤ λ

−p
n0 = T p1 (ln(

1√
α

))−p (3.10)

• For λ1 ≤ λn < λn0, we have

G(λn) = (
α2λ2

ne
2λnT1

1 + α2λ2
ne

2λnT1
)(1 + λ2

n)−
p
2

≤ α2λ2
ne

2λnT1(1 + λ2
n)−

p
2 .

If 0 < p ≤ 2, then

G(λn) ≤ α2e2λnT1λ2−p
n

≤ α2e2λn0T1λ2−p
n0 = α(

1

2T1
)2−p(ln

1

α
)2−p.

Using the inequality α(ln 1
α )2 ≤ 1, it follows

G(λn) ≤ 1

T 2−p
1

(
1

2
ln

1

α
)−p = T p−2

1 (ln
1√
α

)−p. (3.11)

If p > 2, we have

G(λn) ≤ α2e2λnT1 ≤ α2e2λn0T1 = α. (3.12)

From (3.10), (3.11) and (3.12), it follows (3.7).
Let us establish (3.8). From the inequality

1

1− e−λn(T2−T1)
≤ 1

1− e−λ1(T2−T1)
= γ, (3.13)

for i = 1, 2, we have

βne
−λnTi

1 + α2λ2
ne

2λnT1
=

λne
−λn(Ti−T1)

(1− e−λn(T2−T1))(1 + α2λ2
ne

2λnT1)

≤ γλne
−λn(Ti−T1)

1 + α2λ2
ne

2λnT1

≤ γλn
1 + α2λ2

ne
2λnT1

. (3.14)
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• If λ1 ≤ λn < λn0, from (3.14) it follows that

βne
−λnTi

1 + α2λ2
ne

2λnT1
≤ γλn ≤ γλn0 =

γ

T1
ln

1√
α
. (3.15)

Since for 0 < α < 1, ln( 1√
α

) ≤ 1√
α
, we can write

βne
−λnTi

1 + α2λ2
ne

2λnT1
≤ γT−1

1√
α
. (3.16)

• If λn ≥ λn0, from (3.14), we have

βne
−λnTi

1 + α2λ2
ne

2λnT1
≤ γλn

1 + α2λ2
ne

2λnT1

≤ γλn
1 + α2λ2

ne
2λn0T1

=
γλn

1 + αλ2
n

, i = 1, 2. (3.17)

In the following, we consider the both cases T1 ≥ 1 and T1 < 1.
- Let T1 ≥ 1, it is clear that λn1 = 1√

α
is a maximal value point of

G1(λn) = λn
1+αλ2

n
, since

λn1 =
1√
α
≥ 1

T1

1√
α
≥ λn0 =

1

T1
ln(

1√
α

),

from (3.17) we obtain

βne
−λnTi

1 + α2λ2
ne

2λnT1
≤ γG1(λn)

≤ γG1(λn1) =
γλn1

1 + αλ2
n1

≤ γλn1 =
γ√
α
, i = 1, 2. (3.18)

-Let T1 < 1, putting G2(λn) = λn
1+αT 2

1 λ
2
n
, from (3.17) we have

βne
−λnTi

1 + α2λ2
ne

2λnT1
≤ γG1(λn) ≤ γG2(λn). (3.19)

It is clear that λn2 = 1
T1
√
α
≥ λn0 is a maximal value point of G2(λn), hence

from (3.19) it follows

βne
−λnTi

1 + α2λ2
ne

2λnT1
≤ γG2(λn2) =

γλn2

1 + αT 2
1 λ

2
n2

≤ γλn2 =
γ

T1
√
α
. (3.20)
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Combining (3.16), (3.18) and (3.20), it follows (3.8). Let us establish (3.9).
• If λ1 ≤ λn < λn0, we have

βn
(1 + α2λ2

ne
2λnT1)λn

≤ λ−1
n βn =

λne
λnT1

(1− eλn(T2−T1))λn
.

Using the inequalities (3.13) and 1√
α
< 1

α , we obtain

βn
(1 + α2λ2

ne
2λnT1)λn

≤ γeλnT1

≤ γeλn0T1 =
γ√
α
≤ γ

α
. (3.21)

• If λn ≥ λn0, we get

βn
(1 + α2λ2

ne
2λnT1)λn

≤ γeλnT1

(1 + α2λ2
ne

2λnT1)

≤ γeλnT1

(1 + α2λ2
1e

2λnT1)

≤ γ

min(1, λ2
1)

eλnT1

(1 + α2e2λnT1)
. (3.22)

It is easy to check that 2λn0 = 1
T1

ln 1
α is a maximal value point of

G3(λn) = eλnT1

(1+α2e2λnT1 )
, so

βn
(1 + α2λ2

ne
2λnT1)λn

≤ γmax (1, λ−2
1 )G3(2λn0)

≤ γmax (1, λ−2
1 )e2λn0T1

≤ max (1, λ−2
1 )

γ

α
. (3.23)

From (3.21) and (3.23), the inequality (3.9) is obtained. �

Theorem 3.3. Let fδα and gδα be the modified Tikhonov approximations of
the solutions f and g of problem (1.2)-(1.3) such that (2.10) and (2.11) hold.
Let ψδ1 and ψδ2 be the measured data at T1 and T2 respectively, (0 < T1 < T2)
satisfying (2.9). If the regularization parameter is chosen as α = ( δ

E1
)2/(p1+2)

and α = ( δ
E2

)2/(p2+2) respectively then, the following error estimates hold re-
spectively

‖f − fδα‖ ≤ max(1, T p1−2
1 , T p11 ) max((

δ

E1
)

2
p1+2 ,

1

(ln(E1

δ )
1

(p1+2) )p1
)E1

+ γmax(1, T−1
1 )(

δ

E1
)
p1+1

(p1+2)E
p1

(p1+2)

1 , (3.24)
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‖g − gδα‖ ≤ max(1, T p2−2
1 , T p21 ) max((

δ

E2
)

2
p2+2 ,

1

(ln(E2

δ )
1

(p2+2) )p2
)E2

+ γmax(1, λ−2
1 )(

δ

E2
)

p2
p2+2E

2+p2
(p2+2)

2 . (3.25)

Proof. Let us prove (3.24). Apply the triangle inequality, we have

‖f − fδα‖ ≤ ‖f − fα‖+ ‖fα − fδα‖. (3.26)

We compute

‖f − fα‖ = ‖
∞∑
n=1

βn(η1, ϕn)ϕn −
∞∑
n=1

βn
1 + α2λ2

ne
2λnT1

(η1, ϕn)ϕn‖

= ‖
∞∑
n=1

(1− 1

1 + α2λ2
ne

2λnT1
)(1 + λ2

n)−p1/2(1 + λ2
n)p1/2(f, ϕn)ϕn‖

≤ sup
n≥1

((1− 1

1 + α2λ2
ne

2λnT1
)(1 + λn)

−p1
2 )‖

∞∑
n=1

(1 + λ2
n)p1/2(f, ϕn)ϕn‖.

From inequality (3.7) and (2.10) it follows that

‖f − fα‖ ≤ max(1, T p1−2
1 , T p11 ) max(α, (ln(

1√
α

))−p1)E1. (3.27)

On the other hand

‖fα − fδα‖ = ‖
∞∑
n=1

βn
1 + α2λ2

ne
2λnT1

(η1, ϕn)ϕn −
∞∑
n=1

βn
1 + α2λ2

ne
2λnT1

(ηδ1, ϕn)ϕn‖

= ‖
∞∑
n=1

βn
1 + α2λ2

ne
2λnT1

(η1 − ηδ1, ϕn)ϕn‖

= ‖
∞∑
n=1

βn
1 + α2λ2

ne
2λnT1

e−T1λn(ψ2 − ψδ2, ϕn)ϕn

+

∞∑
n=1

βn
1 + α2λ2

ne
2λnT1

e−T2λn(ψδ1 − ψ1, ϕn)ϕn‖

≤ sup
n≥1

(
βne
−T1λn

1 + α2λ2
ne

2λnT1
)‖
∞∑
n=1

(ψ2 − ψδ2, ϕn)ϕn‖

+ sup
n≥1

(
βne
−T2λn

1 + α2λ2
ne

2λnT1
)‖
∞∑
n=1

(ψ1 − ψδ1, ϕn)ϕn‖.
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Using the estimates (3.8) and (2.9), we obtain

‖fα − fδα‖ ≤ max(1, T−1
1 )

γ√
α

(δ1 + δ2) = γmax(1, T−1
1 )

δ√
α
. (3.28)

Combining (3.26) with (3.27) and (3.28), we obtain

‖f − fδα‖ ≤ max(1, T p1−2
1 , T p11 ) max (α, (ln(

1√
α

))−p1)E1+

+ γmax(1, T−1
1 )

δ√
α
. (3.29)

If we select α = ( δ
E1

)2/(p1+2), then one has

‖f − fδα‖ ≤ max(1, T p1−2
1 , T p11 ) max((

δ

E1
)

2
p1+2 , (ln(

E1

δ
)

1
(p1+2) )−p1)E1

+ γmax(1, T−1
1 )(

δ

E1
)

−1
(p1+2) δ

≤ max(1, T p1−2
1 , T p11 ) max((

δ

E1
)

2
p1+2 , (ln(

E1

δ
)

1
(p1+2) )−p1)E1

+ γmax(1, T−1
1 )(

δ

E1
)
p1+1

(p1+2)E
p1

(p1+2)

1 .

Now, we prove (3.25), we have

‖g − gδα‖ ≤ ‖g − gα‖+ ‖gα − gδα‖. (3.30)

By the same calculate used to obtain (3.27), it follows

‖g − gα‖ ≤ max(1, T p2−2
1 , T p21 ) max (α, (ln(

1√
α

))−p2)E2. (3.31)
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On the other hand

‖gα − gδα‖ = ‖
∞∑
n=1

βn
1 + α2λ2

ne
2λnT1

(η2, ϕn)ϕn −
∞∑
n=1

βn
1 + α2λ2

ne
2λnT1

(ηδ2, ϕn)ϕn‖

= ‖
∞∑
n=1

βn
1 + α2λ2

ne
2λnT1

(η2 − ηδ2, ϕn)ϕn‖

= ‖
∞∑
n=1

βn
1 + α2λ2

ne
2λnT1

(1− e−T2λn)

λn
(ψ1 − ψδ1, ϕn)ϕn

+

∞∑
n=1

βn
1 + α2λ2

ne
2λnT1

(1− e−T1λn)

λn
(ψδ2 − ψ2, ϕn)ϕn‖

≤ sup
n≥1

(
βn

(1 + α2λ2
ne

2λnT1)λn
)‖
∞∑
n=1

(ψ1 − ψδ1, ϕn)ϕn‖

+ sup
n≥1

(
βn

(1 + α2λ2
ne

2λnT1)λn
)‖
∞∑
n=1

(ψ2 − ψδ2, ϕn)ϕn‖.

Using the estimates (3.9) and (2.9), we obtain

‖gα − gδα‖ ≤ max(1, λ−2
1 )

γ

α
(δ1 + δ2) = γmax(1, λ−2

1 )
δ

α
(3.32)

Combining (3.30) with (3.31) and (3.32), we obtain

‖g − gδα‖ ≤ max(1, T p2−2
1 , T p21 ) max (α, (ln(

1√
α

))−p2)E2

+ γmax(1, λ−2
1 )

δ

α
. (3.33)

If we select α = ( δ
E2

)2/(p2+2), then one has

‖g − gδα‖ ≤ max(1, T p2−2
1 , T p21 ) max((

δ

E2
)

2
p2+2 , (ln(

E2

δ
)

1
(p2+2) )−p2)E2

+ γmax(1, λ−2
1 )(

δ

E2
)

−2
(p2+2) δ

≤ max(1, T p2−2
1 , T p21 ) max((

δ

E2
)

2
p2+2 ,

1

(ln(E2

δ )
1

(p2+2) )p2
)E2

+ γmax(1, λ−2
1 )(

δ

E2
)

p2
p2+2E

2+p2
(p2+2)

2 .
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Remark 3.1. • In practice ‖f‖p is usually not known, so we do not obtain an

exact priori bound E. However, if we select α = Cδ
2
p+2 , where C is a positive

constant, we can also obtain the convergence results. Indeed, if we choose
α = C(δ)2/(p1+2) and α = C(δ)2/(p2+2) respectively, we obtain from (3.29)
and (3.33) respectively the following estimates

‖f − fδα‖ ≤ max(1, T p1−2
1 , T p11 ) max (Cδ

2
p1+2 , (ln(

1
√
Cδ

1
p1+2

))−p1)E1

+ γmax(1, T−1
1 )C−1/2δ

p1+1
p1+2 → 0 as δ → 0

and

‖g − gδα‖ ≤ max(1, T p2−2
1 , T p21 ) max (Cδ

2
p2+2 , (ln(

1
√
Cδ

1
p2+2

))−p2)E2

+ γmax(1, λ−2)C−1δ
p2
p2+2 → 0 as δ → 0.

Hence, fδα and gδα can be viewed as the approximations of the exact solutions
f and g respectively.
• From the convergence estimates (3.24) and (3.25) we can see that the log-
arithmic term with respect to δ is the dominating term. Asymptotically this

yields a convergence rate of order (ln(Eδ )
1

(p+2) )−p , the others terms are asymp-
totically negligible compared to this term.

4 Numerical implementation

In this section, we will numerically implement two examples to illustrate the
effectiveness of the proposed method. Consider the problem of finding the
functions f(x), g(x) and u(x, t) in the system

ut(x, t)− uxx(x, t) = f(x), 0 < x < π, 0 < t ≤ 1,

u(x, 0) = g(x), 0 ≤ x ≤ π,
u(0, t) = u(π, t) = 0, 0 < t < 1,

u(x,
1

2
) = ψ1(x), u(x, 1) = ψ2(x), 0 ≤ x ≤ π.

(4.1)

Denote

A = − ∂2

∂x2
, with D(A) = H1

0 (0, π) ∩H2(0, π) ⊂ H = L2(0, π).

λn = n2, ϕn =

√
2

π
sin(nx), n ∈ N∗,
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are eigenvalues and orthonormal eigenfunctions, which form a basis for H. By
separating varaiables, we obtain the solution of the direct problem correspond-
ing to problem (4.1) as follows

u(x, t) = S(t)g(x) +K(t)f(x) =

∞∑
n=1

(e−n
2t(g, ϕn) +

(1− e−n2t)

n2
(f, ϕn))ϕn,

where for b ∈ H, bn = (b, ϕn) =
√

2
π

∫ 1

0
b(s) sin(ns)ds, n = 1, 2...

The modified Tikhonov regularized solutions are given by

fδα(x) =

∞∑
n=1

βn
1 + α2n4en2 (ηδ1, ϕn)ϕn, (4.2)

gδα(x) =

∞∑
n=1

βn
1 + α2n4en2 (ηδ2, ϕn)ϕn, (4.3)

where βn = n2

e−
n2
2 −e−n2

,

ηδ1(x) =

∞∑
n=1

(e−
1
2n

2

ψδ2 − e−n
2

ψδ1, ϕn)ϕn

and

ηδ2(x) =

∞∑
n=1

(
(1− e−n2

)

n2
ψδ1 −

(1− e− 1
2n

2

)

n2
ψδ2, ϕn)ϕn.

Hence, we have

fδα(x) =

∫ 1

0

∞∑
n=1

βn
1 + α2n4en2 (θ1nψ

δ
2(s)− θ2nψ

δ
1(s)) sin(ns) sin(nx)ds,

gαk (x) =

∫ 1

0

∞∑
n=1

βn
1 + α2n4en2 (γ1nψ

δ
1(s)− γ2nψ

δ
2(s)) sin(ns) sin(nx)ds,

with θ1n = e−
1
2n

2

, θ2n = e−n
2

, γ1n = (1−e−n
2
)

n2 , and γ2n = (1−e−
1
2
n2

)
n2 .

We use the trapezoidal rule to approach the integral and do an approximate
truncation for the series by choosing the sum of the front M the sum of the
front M terms. After considering an equidistant grid 0 = x1 < x2 < ..... <

xM+1 = π, (xi = (i−1)π
M , i = 1, ....,M+1), we get the discrete approximations

fδα = (fδα(x1), fδα(x2), ..., fδα(xM ))
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and
gδα = (gδα(x1), gδα(x2), ..., gδα(xM ))

of (4.2) and (4.3) respectively, given by the followig matrix forms

fδα = AαΨδ
2 − BαΨδ

1, (4.4)

gδα = CαΨδ
2 − DαΨδ

1, (4.5)

where

Aαij =
2

π

N∑
n=1

βnθ1n

1 + α2(n4en2 sin(nxi) sin(nxj)l,

Bαij =
2

π

N∑
n=1

βnθ2n

1 + α2n4en2 sin(nxi) sin(nxj)l,

Cαij =
2

π

N∑
n=1

βnγ1n

1 + α2n4en2 sin(nxi) sin(nxj)l,

Dα
ij =

2

π

N∑
n=1

βnγ2n

1 + α2n4en2 sin(nxi) sin(nxj)l,

l = π
M and Ψδ

i ∈ RM+1, i = 1, 2 are the vectors obtained by adding a random
distributed perturbation to the corresponding data

Ψi = (ψi(x1), ψi(x2), ..., ψi(xM )),

i.e.,
Ψδ
i = Ψi + ε randn(size(Ψi)), i = 1, 2, (4.6)

ε indicates the noise level of the measurements data and the function randn(·)
generates arrays of random numbers whose elements are normally distributed
with mean 0, variance σ2 = 1 and standard deviation σ = 1. randn(size(g))
returns an array of random entries that is of the same size as ψ. The noise level
δ can be measured in the sense of root mean square error (RMSE) according
to

δ = ‖ψδ − ψ‖l2 = (
1

N + 1

N∑
i=0

(ψ(xi)− ψδ(xi))2)1/2.

In some cases the direct problem with the heat source f(x) and the initial
condition g(x) does not have an anlytical solution, in this case we propose to
discretise numerically the problem using a finite difference method. Consid-
ering a uniform time-grid of ∆t = 1

m , tj = j∆t, j = 0, ...,m and a uniform
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space-grid of h = 1
n , xi = ih, i = 0, ..., n and using the following Crank-

Nikolson scheme
uj+1
i − uji

∆t
=

1

2
(

1

h2
(uj+1
i+1 + uj+1

i−1 − 2uj+1
i ) + fi) +

1

2
(

1

h2
(uji+1 + uji−1 − 2uji ) + fi),

uj0 = ujn = 0, 1 ≤ j ≤ m,
u0
i = gi, 0 ≤ i ≤ n,

(4.7)
here uji is the approximate value of u(xi, tj) at the mesh points (xi, tj), fi =
f(xi) and gi = g(xi). Rewriting the resulting system into a matrix form, we
obtain the following (n− 1)× (n− 1) linear system of equations{

AU j+1 = BU j + C, 0 ≤ j ≤ m− 1,

U0 = (g1, g2, ..., gn−1)>,
(4.8)

where

A=


1 + µ −µ2
−µ2 1 + µ −µ2

. . .
. . .

. . .

−µ2 1 + µ −µ2
−µ2 1 + µ



B=


1− µ µ

2
µ
2 1− µ µ

2
. . .

. . .
. . .

µ
2 1− µ µ

2
µ
2 1− µ


µ = ∆t

h2 , U
j = (uj1, u

j
1, ..., u

j
n−1)> and C = (f1, f2, ..., fn−2, fn−1)>.

In the following we give two examples, the first example haS the exact expres-
sion of the solutions (u(x, t), f(x), g(x)), in the second example, the solution
does not possess an explicit analytical expression.

Example 1 It is easy to see that if f(x) = 2 sinx and g(x) = sinx, then
u(x, t) = (2 − e−t) sinx is the exact solution of the problem (4.1). Conse-

quently, ψ1(x) = (2− e− 1
2 ) sinx and ψ2(x) = (2− e−1) sinx.



A MODIFIED TIKHONOV REGULARIZATION METHOD FOR A CLASS OF
INVERSE PARABOLIC PROBLEMS 199

α 0.05α0 0.1α0 0.2α0 0.3α0 0.4α0 0.5α0 0.6α0 α0

Rer(f) 0.0035 0.0017 0.0011 0.0047 0.0033 0.0043 0.0097 0.0172

Rer(g) 0.0191 0.0041 0.0028 0.0072 0.0160 0.0014 0.0080 0.0139

Table 1. Relative errors Rer(f) and Rer(g) with p = 1, M = 100, N = 6,

ε = 0.01, δ = 0.0216, α0 = δ
2
p+2 = 0.0776 for example 1.

N 4 5 6 7 8 9 10
Rer(f) 0.0040 0.0018 0.0011 0.0052 0.0054 0.0033 0.0045
Rer(g) 0.0117 0.0037 0.0028 0.0082 0.0143 0.0023 0.0135

Table 2. Relative errors Rer(f) and Rer(g) with p = 1, M = 100, ε = 0.01
and α = α0.0.2 ' 0.0155 for example 1.

M 10 50 100 150 200 250 300
Rer(f) 0.0130 0.0051 0.0016 0.0017 0.0023 0.022 0.0018
Rer(g) 0.0320 0.0190 0.0039 0.0072 0.0227 0.0036 0.0075

Table 3. Relative errors Rer(f) and Rer(g) with p = 1, N = 6, ε = 0.01 for
example 1.

ε 0.1 0.01 0.001 0.0001
α 0.3600 0.0727 0.0149 0.0034

Rer(f) 0.0463 0.0017 1.6034e− 004 7.1518e− 005
Rer(g) 0.0503 0.0037 0.0032 0.0015

Table 4. Relative errors Rer(f) and Rer(g) with p = 1, M = 100, N = 6, for
example 1.

Table 1 shows that the parameter α has the regularization effect. So, we can
choose α = 0.2α0, (α0 = δ2/3). Thus, in practice, it is relatively easy to find
an appropriate value of α. Tables 2 and 3 and show the influence of the choice
of N and M respectively on the relative error. Table 4 and Figure 1 (resp.
Figure 2) show the comparisons between the function f(x) (resp. g(x)) and
its computed approximations with different noise level. It can be seen that
as the amount of noise decreases the regularized solutions approximate better
the exact functions and even with the noise level ε = 0.1 the approximate
solutions are still good agreement with the corresponding exact solutions.
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Figure 1: The comparison between the exact solution f and its computed
approximations f εδ with M = 100, N = 6 and p = 1 for example1.
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Figure 2: The comparison between the exact solution g and its computed
approximations gεδ with M = 100, N = 6 and p = 1 for example1.

Example 2 Let g(x) = sin(2x) and f(x) be the following piecewise smooth
function

f(x) =



0, 0 ≤ x ≤ π

4
,

4

π
x− 1,

π

4
< x ≤ π

2
,

3− 4

π
x,

π

2
< x ≤ 3π

4
,

0,
3π

4
< x ≤ π.
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In this example, we get the mesurable data ψ1(x) and ψ2(x) by solving the
problem (4.8), then obtain the perturbed data according to (4.6), finally obtain
the regularized solutions from (4.4) and (4.5).
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Figure 3: The comparison between the exact solution f and its computed
approximations f εδ with M = 100, N = 6 and p = 1 for example2.

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

x

g(
x)

 a
nd

 it
s 

 a
pp

ro
xi

m
at

io
ns

 

 
ε=0.01
ε=0.001
ε=0.0001
exact solution

Figure 4: The comparison between the exact solution g and its computed
approximations gεδ with M = 100, N = 6, p = 1 for example2.

Figure 3 (resp. Figure 4) indicates the comparison between the initial
condition f(x) (resp. the function g(x)) and its regularized solutions. Taking
into consideration the nonsmooth and the ill posedness of the problem, the
results presented in Figures 3 and 4 are reasonable.
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5 Conclusion

In this paper, we have proposed a modified Tikhonov regularization method
to identify an unknown source term and unknown initial condition in a class of
inverse boundary value problems of parabolic type, convergence results were
established, and error estimates have been obtained under an a priori bound
of the exact solutions. Meanwhile, a numerical example verified the efficiency
and accuracy of the method.
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